Fusing Audio, Textual, and Visual Features for Sentiment Analysis of News Videos

نویسندگان

  • Moisés Henrique Ramos Pereira
  • Flávio Luis Cardeal Pádua
  • Adriano M. Pereira
  • Fabrício Benevenuto
  • Daniel Hasan Dalip
چکیده

This paper presents a novel approach to perform sentiment analysis of news videos, based on the fusion of audio, textual and visual clues extracted from their contents. The proposed approach aims at contributing to the semiodiscoursive study regarding the construction of the ethos (identity) of this media universe, which has become a central part of the modernday lives of millions of people. To achieve this goal, we apply state-of-the-art computational methods for (1) automatic emotion recognition from facial expressions, (2) extraction of modulations in the participants’ speeches and (3) sentiment analysis from the closed caption associated to the videos of interest. More specifically, we compute features, such as, visual intensities of recognized emotions, field sizes of participants, voicing probability, sound loudness, speech fundamental frequencies and the sentiment scores (polarities) from text sentences in the closed caption. Experimental results with a dataset containing 520 annotated news videos from three Brazilian and one American popular TV newscasts show that our approach achieves an accuracy of up to 84% in the sentiments (tension levels) classification task, thus demonstrating its high potential to be used by media analysts in several applications, especially, in the journalistic domain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusing audio, visual and textual clues for sentiment analysis from multimodal content

A huge number of videos are posted every day on social media platforms such as Facebook and YouTube. This makes the Internet an unlimited source of information. In the coming decades, coping with such information and mining useful knowledge from it will be an increasingly difficult task. In this paper, we propose a novel methodology for multimodal sentiment analysis, which consists in harvestin...

متن کامل

Multimodal Sentiment Analysis

With more than 10,000 new videos posted online every day on social websites such as YouTube and Facebook, the internet is becoming an almost infinite source of information. One important challenge for the coming decade is to be able to harvest relevant information from this constant flow of multimodal data. In this talk, I will introduce the task of multimodal sentiment analysis, and present a ...

متن کامل

YouTube Movie Reviews: In, Cross, and Open-domain Sentiment Analysis in an Audiovisual Context

In this contribution we focus on the task of automatically analyzing a speaker’s sentiment in on-line videos containing movie reviews. In addition to textual information, we consider adding audio features as typically used in speech-based emotion recognition as well as video features encoding valuable valence information conveyed by the speaker. We combine this multi-modal experimental setup wi...

متن کامل

Sentiment analysis methods in Sentiment analysis methods in Persian text: A survey

With the explosive growth of social media such as Twitter, reviews on e-commerce website, and comments on news websites, individuals and organizations are increasingly using opinions in these media for their decision making. Sentiment analysis is one of the techniques used to analyze userschr('39') opinions in recent years. Persian language has specific features and thereby requires unique meth...

متن کامل

MOSI: Multimodal Corpus of Sentiment Intensity and Subjectivity Analysis in Online Opinion Videos

People are sharing their opinions, stories and reviews through online video sharing websites every day. Studying sentiment and subjectivity in these opinion videos is experiencing a growing attention from academia and industry. While sentiment analysis has been successful for text, it is an understudied research question for videos and multimedia content. The biggest setbacks for studies in thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016